比与比例教学设计

时间:2024-04-05 22:08:13
比与比例教学设计

比与比例教学设计

作为一位优秀的人民教师,时常需要准备好教学设计,借助教学设计可以提高教学效率和教学质量。那么优秀的教学设计是什么样的呢?以下是小编为大家收集的比与比例教学设计,欢迎阅读与收藏。

比与比例教学设计1

一、教材分析

反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

二、学情分析

由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

三、教学目标

知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

四、教学重难点

重点:理解反比例函数意义,确定反比例函数的表达式.

难点:反比例函数表达式的确立.

五、教学过程

(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

位:m)随宽x(单位:m)的变化而变化。

请同学们写出上述函数的表达式

14631000(2)y= tx

k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=

是自变量,y是函数。

此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

举例:下列属于反比例函数的是

(1)y= (2)xy=10 (3)y=k-1x (4)y= -

此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

已知y与x成反比例,则可设y与x的函数关系式为y=

k x?1

k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

例:已知y与x2反比例,并且当x=3时y=4

(1)求出y和x之间的函数解析式

(2)求当x=1.5时y的值

解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

六、评价与反思

本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

比与比例教学设计2

教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。

2、使学生能利用正反比例的意义正确解答应用题。

培养学生的判断分析推理能力。

教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

(一)复习

1.说说正、反比例的意义。

2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从A地到B地,行驶的速度和时间。

(3)每块砖的面积一定,砖的块数和总面积。

(4)海水的出盐率一定,晒出的盐和海水重量。

3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

(2)一辆汽车从A地到B地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米

(二)新课

例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

(1)用以前方法解答。

(2)研究用比例的方法解答

题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

能不能利用这个关系式列比例解答?

解比例,同学自已完成,及时纠正。检验。

改变例1中的条件和问题

甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?

教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?

1、以前的发法解答。

2、怎样用比例知识解答?

3讨论结果填书上。

4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

整理和复习

教学要求:

1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

2、使学生能正确理解正、反比例的意义,能正确进行判断。

3、培养学生的思维能力。

教学过程:

知识整理

1回顾本单元的学习内容,形成支识网络。

2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

复习概念

什么叫比?比例?比和比例有什么区别?

什么叫解比例?怎样解比例,根据什么?

什么叫呈正比例的量和正比例关系?什么叫反比例的关系 ……此处隐藏23439个字……决问题的思路。把问题转化到了求济南到青岛的实际距离大约是多少千米。学习邱实际距离时,让学生充分发挥自己的思考探究能力,找出解决问题的方法,有的同学想到了方程法,还有的同学根据关系式“实际距离=图上距离÷比例尺”解答。对于学生的不同方法我给予了充分的肯定,让学生说明道理,另一方面又引导学生自觉进行比较反思,从而掌握求实际距离的基本方法。

(3)学生对于题目当中的数据,缺乏认真地观察和思考,单位不统一时,就直接做的大又有在,对于这一点应加强学习习惯的养成教育。

2、使用建议

书上呈现只有一种方法,并不是硬要求学生掌握只用一种方法,可能是为了以后的用比例解决问题。对学生来说,并不是书上的方法就是好的。我觉得应该鼓励学生结合已有的知识经验,运用多种方法解决,学会欣赏,以实现个性与共性的统一,同时也进一步理解比例尺的意义。

3、需破解的问题

是不是把这一个问题当成一个问题来解决,突出解决问题的多样化,培养学生解决问题的能力。所以除了常规的知识与技能目标外,增加“经历解决实际距离问题的探索过程,培养学生解决问题的能力”和“并结合已有知识掌握”。

比与比例教学设计19

认识加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

五、课堂练习

1、判断下面每题中的两个量是不是成反比例,并说明理由。

(1)圆柱体的体积一定,底面积和高。

(2)小林做10道数学题,已做的题和没有做的题。

(3)长方形的长一定,面积和宽。

(4)平行四边形面积一定,底和高。

2、判断下面每题中的两种量是不是成反比例,并说明理由。

(1)煤的总量一定,每天的烧煤量和能够烧的天数。

(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。

(3)生产电视机的总台数一定,每天生产的台数和所用的天数。

五、全课小结

今天同学们学到了什么知识?觉得还有什么地方感到困惑的吗?

六、作业:找一找生活中有哪些例子成反比例。

板书设计

反比例

速度×时间=路程(一定)

每杯的果汁量×分的杯数=果汁总量(一定)

两种相关联的量,一种量变化,另一种量也随着变化,变化时两种量中相对应的两个数的积一定,这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。

比与比例教学设计20

教学目标:

1、使学生认识比例的“项”以及“内项”和“外项”。

2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

3、通过自主学习,让学生经历探究的过程,体验成功的快乐。

教学重点:

理解并掌握比例的基本性质。

教学难点:

引导观察,自主探究发现比例的基本性质

设计理念:

本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。

教学过程:

一、 从知识的矛盾冲突中导入并引入。

1)3:8=9:( ) 0.5:( )=5:17

制造冲突,也为后面的思考题做理论铺垫,顺便起到引入课题,探索性质后回应开头的知识,也起到一定的教育作用。(请勇敢的同学配合老师)

师:某某你出生的时间哪一年哪一月哪一日?(根据学生的回报板书两次分子分母上下易位,同为比例的外项)

你还想知道教师内谁的生日,请他告诉你.(板书一次,做一个内项,那么括号应该怎样填呢)今天学习了比例的基本性质我们就可以迅速的填出了。(板书:比例的基本性质)

二、 探索发现新知。

1.引用练习中的3:8=9:24 为例子,比例中的四个数叫什么名字呢?两端的两项叫做什么,中间的两项叫做什么?(自学课本)

学生回报,师完成板书:

(注意板书的时候教师的手势要指明确到位)

2、练习:请指出下列比例的两个外项和内项各是多少?

80:2=200:5 6:10=9:15 1/2:1/3=6:4 0.2:2.5=4:50

2.4:1.6=60:40

3、这么多的比例,每个比例的两个外项和两个内项之间存在有什么共同的特点么?可以说的具体一些。

带着问题小组内展开讨论。(教师可以参与当中若干组的活动)时间2分钟。

4、小组汇报初步形成共识:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(多找几个小组发表意见)

回到板书例题验证:两个外项的积是:3×24=72

两个内项的积是:8 ×9=72

5、拿出自己任意找的5个比例,验证是否存在相同的特点。(请学生在展台展示自己的5个比例,并说明外项和内项的积情况)2明,如果出现不相等的,要观察反例,说明两个比组不成比例。

6、完成板书:在比例里,两个外项的积等于两个内项的积

如果把比例写成分数的形式呢,以板书的例子,写成分数的形式,引入等号两边的分子和分母交叉相乘,所得的积相等。

三、 基本练习。

1. 应用比例的基本性质,判断下面两个比是否能组成比例。

(1)6:3和8:5 (2) 1∶5和0.8∶4

(3)1/3:1/4和12∶9 (4)1.2:3/和4/5:5

(注意学生语言叙述的规范性:如1)两个外项的积是6×3=18

两个内项的积是3×8=24,18≠24,所以不能组成比例)

2、在括号里填上适当的数

(1)12:3=():5 (2)():1/3=1/4:1/6

(3)0.2:0.6=6:() (4)4:3=80:()

3、用5、3、4、8这四个数组比例,看看你能组几个?为什么?

4、把5、3、4、8这四个数换掉其中的一个,组成比例。

4、在例一个比中,两个外项的积互为倒数,其中的一个内项是4/5,另一个内项是()。

5、回顾矛盾冲突题目:9解决因为两个外项乘积是1,所以两个外项乘积是1,另一个数就是那个已知数据的倒数。

四、全课总结:

谈一谈通过这节课的学习你有哪些收获?(质疑,并完成课题总结),提出预习任务,(那么利用比的基本性质如和求比例中的未知数呢,请自觉预习课本35页的例题2和3)

《比与比例教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式