圆锥的体积教学设计

时间:2024-03-22 07:32:15
圆锥的体积教学设计

圆锥的体积教学设计

作为一位兢兢业业的人民教师,时常需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。那么优秀的教学设计是什么样的呢?下面是小编收集整理的圆锥的体积教学设计,欢迎大家分享。

圆锥的体积教学设计1

教学目的:

1、情感目标培养学生探索合作精神。

2、知识目标理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式,以及运用公式计算圆锥体积。

3、能力目标培养学生的空间想象力,合作交往能力、创新思维以及动手操作能力。

重点

理解圆锥体积公式的推导过程,掌握圆锥体积的计算公式。

难点

圆锥体积计算公式的推导过程。

关键

公式推导过程中:圆柱体和圆锥体必须是等底等高,则它们之间才存在必然的关系。

活动一:比大小

活动目的:激发求知欲望。

课件播放:春天到了,万物复苏,春笋也从睡梦中醒来,三只可爱的小熊猫来到竹林中踩竹笋,它们都踩到了一只竹笋。熊猫都都说:今天我踩的竹笋是最大的。熊猫眯眯听了不服气的说:谁说的,第一大的应该是我的`竹笋。熊猫花花也不甘示弱的说:不对,不对,我的竹笋应该是第一大!

师:竹林里的争论还在继续着,同学们,到底三只熊猫的竹笋谁的最大呢?让我们来猜一猜吧!

师:我们光是猜,说服力并不强,那么能找到什么真正能解决问题的办法吗?

活动二:议一议

活动目的:通过师生、生生的互动讨论、交流、探究,从而发现圆锥的体积和圆柱的体积有关。

1、出示课题

2、找圆锥体和学过的什么体有相似之处

3、猜一猜,圆柱的体积和圆锥的体积的关系。

圆锥的体积教学设计2

教材内容的分析:本课“圆锥的认识和体积”是在学生学习了圆柱体积的基础上进行的。教学时首先认识、理解圆锥体的特征,直观又形象。然后通过用空心圆锥向空心圆柱的容器里倒水的实验得到圆锥的体积公式。进而培养学生的主动探究能力和合作精神。

教学目标:

(1)掌握圆锥特征、引导学生通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题;

(2)培养学生的观察、逻辑思维能力和初步的空间观念;

(3)向学生渗透知识间可以相互转化的辩证唯物主义思想,学习将新知识转化为原有知识的学习方法。

教学重点:掌握圆锥特征、圆锥体积计算公式推导过程。

教学难点:圆锥体积计算公式推导过程。

教具、学具准备:等底等高的圆柱和圆锥空心实物,任意一个圆柱和圆锥,若干沙子或水。

教学准备:圆锥水等底等高的圆柱、圆锥容器大三角板直尺

教学过程:

一、进入学习情境

1.开始,回忆学过的立体图形,并板书圆柱的体积公式。今天我们来认识一种新的立体图形。

2.观察课本实物图:铅锤、谷堆、冰激凌等。

(1)这些物体的形状与圆柱体一样吗?哪里不一样?根据这些物体的形状,你们能给它们起个名字吗?(引导说出“圆锥”)

(2)在我们的身边还有哪些物体是圆锥体?(学生举例如路障、喇叭、跳棋)

3、师:你知道圆锥各部分的名称吗?圆锥有哪些特征?

拿出圆锥模型,介绍圆锥的特征。

(1)用手摸一摸圆锥,你发现了什么?

(小组内先互相说一说,后师板书:

1、圆锥有一个顶点

2、圆锥只有一个底面,这个底面是个圆形。

3、侧面是一个曲面,展开图是扇形。)

从实物图中抽象出一个圆锥的立体图形来,教师画一个不带高的圆锥图。

出示两个圆锥(一个高,一个矮),观察这两个圆锥,你发现了什么?是由圆锥的什么决定的?(板书:高)

下面我们来研究圆锥的高。你想知道圆锥高的哪些知识?

1、什么是圆锥的高?

2、几条高?为什么只有一条高?

3、怎么测量圆锥的高?)

问:谁来回答第一个问题?(齐读板书)

再看第二个问题(1条高)指出高,怎么画?为什么画虚线?所以我们一般用虚线表示。

你认为测量时要注意什么?

(2)明确并板书:圆锥的底面是个圆,圆锥的'侧面是一个曲面,从圆锥的顶点到底面圆心的距离是圆锥的高。因为圆锥只有一个顶点,所以它只有一条高。

4、了解了圆锥体的特征,我们再来研究圆锥体的体积公式。怎样计算一个圆锥物体的体积呢?我们学习圆柱体积公式的时候借助以前学过的长方体,今天我们学习圆锥体体积也可利用刚刚学过的圆柱体的体积,大家猜一猜,圆锥的体积与圆柱体积有什么关系?

(板书课题:圆锥的体积)

二、自主学习

探索圆锥体积与圆柱体积的关系。

1、师出示实验要求:把空圆锥装满水,倒入空圆柱中,测量高度,几次装满,统计次数填入实验报告单。

2、汇报交流

(1)小组讨论:通过刚才的实验和统计,你发现了什么?圆柱的体积和圆锥的体积有什么关系?是不是任意两个圆锥体和圆柱体就有这样的关系呢?再来看实验。

(2)小组代表汇报交流:圆柱体积等于和它等底等高的圆锥体积的3倍,圆锥的体积等于和它等底等高的圆柱体积的三分之一。

教师强调等底等高这个前提条件

3、概括圆锥体积公式:

师:圆柱的体积是:体积=底面积×高用字母表示V=Sh那么和它等底登高的圆锥体体积是圆柱体积的三分之一怎样表示呢?

圆锥体体积=1/3×底面积×高V=1/3sh

三、实践运用

根据这个公式我们可以解决一些实际问题

1、一个圆锥形的零件,底面积是28.26平方厘米,高是14厘米,这个零件的体积是多少立方厘米?

一生板演,汇报

2、一个圆锥形,底面直径是4厘米,高6厘米,这个圆锥的体积是多少立方厘米?

四、课堂练习

(1)S=20平方米h=12米(2)r=10米h=15米

(3)d=6米h=10米(4)c=62.8米h=9米

五、小结:

今天我们学习了圆锥体,你有哪些收获?

学生汇报:1、圆锥体的特征

2、圆锥体的体积公式

圆锥的体积教学设计3

教学过程:

一、情境引入:

(1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?

(2)学生发言:(把它放进盛水的量杯里,看水面升高多少……)

(3)教师评价:这种方法可行,你利用上升的这部分水的 ……此处隐藏19278个字……3?

练习:一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

一个圆锥的体积是15立方厘米,与它等底等高的圆柱的体积是多少?

2、教学练习四第3题

(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

说明:不要漏乘1/3,计算时能约分的要先约分。

3、巩固练习:完成练习四第4题。

4、教学例3

(1)出示例3

已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上,做完后集体订正。(注意学生最后得数的`取舍方法是否正确)

三、巩固练习

1、做练习四的第7题。

学生先独立判断这三句话是否正确,然后全般核对评讲。

2、做练习四的第8题。

(1)引导学生学生思考回答以下问题:

①这道题已知什么?求什么?

②求圆锥的体积必须知道什么?

③求出这堆煤的体积后,应该怎样计算这堆煤的重量?

(2)让学生做在练习本上,教师巡视,做完后集体订正。

3、做练习四的第6题。

(1)指名学生先后回答下面问题:

①圆柱的侧面积等于多少?

②圆柱的表面积的含义是什么?怎样计算?

③圆柱体积的计算公式是什么?

④圆锥的体积公式是什么?

(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

四、总结

这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

教学反思

俗话说“眼见为实”,所以相对于课件演示而言,教师在全班演示会更直观,结论也更具信服性。

俗话又说“纸上得来终觉浅,绝知此事要躬行”,所以相对于看教师演示与自己亲自动手实验,亲身经历探究印象会更深刻。

课堂如果以4——6人小组为单位进行实验,全班至少得有9套以上教具。可我校现有教具数量不够。如果要求学生课前自制教具,他们暂时无法制作出与圆柱等底等高高的圆锥。所以只好改为教师演示,学生观察。

仅用一次实验就得出结论是不严谨的,所以课堂上必须让学生历经多次不同实验后才能得到正确结论。根据学校现有教具,今天我准备了两套不同大小的等底等高圆柱、圆锥作为器材。在实验中,我不仅让学生清晰地看到将圆锥内的水倒3次可以注满与它等底等高的圆柱,同时,还让他们看到圆柱内的水再反倒回等底等高的圆锥时要倒3次。不仅自己示范演示,也让学生参与演示实验。最后,我还用不等底等高的圆柱与圆锥做实验,强调实验结果只有在“等底等高”的条件下才能成立。因为实验环节落实较好,全班作业正确率高。

圆锥的体积教学设计15

教学内容:

九年义务教育六年制小学数学第十二册P32页。

教学目标:

1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。

2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。

3、进一步培养学生将所学知识运用和服务于生活的能力。

教学重点:

灵活运用圆柱圆锥的有关知识解决实际问题。

教学难点:

同教学难点。

设计理念:

练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。力求使不同层次的学生都学有收获。

教学步骤、教师活动、学生活动

一、复习铺垫、内化知识。1. 圆锥体的体积公式是什么?我们是如何推导的?

2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。

(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。

(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。

(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的`体积是()立方厘米,圆锥的体积是()立方厘米。

3.求下列圆锥体的体积。

(1)底面半径4厘米,高6厘米。

(2)底面直径6分米,高8厘米。

(3)底面周长31.4厘米.高12厘米。

4、教师根据学生练习中存在的问题,集体评讲。同座位的同学先说一说圆锥体积公式的推导过程。

学生独立练习,互相批改,指出问题。

学生交流一下这几题在解题时要注意什么?

二、丰富拓展、延伸练习。1.拓展练习:

(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?

(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?

2.完成31页第5题。讨论下列问题:

(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?

(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?

3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?

学生分组讨论,教师参与其中,以有疑问的方式参与讨论。

三、充分提高,全面升华。

1.展示一个圆锥形的沙堆,小组讨论一下用什么方法可以测量出它的体积。

2.教师给每一组一小袋米。让学生在桌子上堆成一个近似的圆锥体,通过合作测量的形式求出它的体积。

3.讨论练习八蒙古包所占空间的大小的方法。

(1)蒙古包是由哪几个部分组成的?

(2)上部的圆锥和下部的圆柱有哪些相同的地方,有哪些不同的地方?

(3)同学们能独立地求出蒙古包所占的空间的大小吗?请试一试。

4.交流一下本节课的收获。

学生分组讨论后动手实践并计算。

学生先交流。

四、全课总结,内化知识。

1.提问:

(1)同学们掌握了圆锥体的哪些知识?

(2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?

2.学有余力的同学思考38页思考题。

3.作业:练习八6、7、8

学生独立练习

《圆锥的体积教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式